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ABSTRACT
Arbitrary public announcement logic reasons about how the
knowledge of a set of agents changes in response to (possibly
arbitrary) public announcements of true epistemic formu-
las. We consider a variant of arbitrary public announcement
logic called arbitrary positive announcement logic, which re-
stricts arbitrary public announcements to positive formulas.
Positive formulas prohibit statements about the ignorance
of agents, and as a result have useful properties that make
their effects more predictable and well-behaved.

We present preliminary results in this logic, showing that
it is more expressive than public announcement logic for
multiple agents, that it is not at least as expressive as ar-
bitrary public announcement logic, that the model-checking
problem is PSPACE-complete and that there is a sound and
complete axiomatisation. We conjecture that, unlike arbi-
trary public announcement logic, the satisfiability problem
for this logic is decidable.

Keywords: Arbitrary public announcement logic, dynamic
epistemic logic, epistemic protocol synthesis, modal logic,
multi-agent systems, refinements, positive formulas.

CR Classifications: F.4.1 [Theory of Computation] Math-
ematical Logic and Formal Languages – Mathematical Logic.

1. INTRODUCTION
Dynamic epistemic logics consider how knowledge changes
as a result of the communication of information in a multi-
agent system. Public announcement logic in particular is
concerned with reasoning about the effects of public an-
nouncements of true epistemic statements. The public na-
ture of the communication means that every agent receives
the communication, every agent knows that every agent re-
ceives the communication, every agent knows that every
agent knows that every agent receives the communication,
and so on. The effect of publicly announcing a statement
is often that the statement becomes common knowledge
amongst the agents, that is, every agent knows that the
statement is true, every agent knows that every agent knows
that the statement is true, and so on. If a public announce-
ment of a statement results in common knowledge of the
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statement we say that it was a successful public announce-
ment. However as public announcements can include state-
ments about the ignorance of agents, there are cases where
a statement that is true before announcement becomes false
after announcement, and such statements cannot be suc-
cessful public announcements. For example, if the Moore
sentence “It is raining and you don’t know that it is rain-
ing” is true, then publicly announcing this fact will cause
it to become false, so it cannot become common knowledge
(one cannot know something that is false).

Public announcement logic (PAL) [9, 13] extends epistemic
logic with operators for reasoning about the effects of spe-
cific public announcements. The formula [ψ]ϕ means that
“ϕ is true after the truthful announcement of ψ”. Arbi-
trary public announcement logic (APAL) [3] augments this
further with operators for reasoning about arbitrary public
announcements. The formula �ϕ means that “ϕ is true af-
ter the truthful announcement of any epistemic formula”.
Quantifying over the communication of information as in
APAL has applications to epistemic protocol synthesis prob-
lems, where we wish to achieve epistemic goals by communi-
cating information to agents, but we don’t know of a specific
protocol that will achieve the goal and may not even know
if such a protocol exists. In principle these problems can be
solved by specifying problems as formulas in the logic and
applying model-checking or satisfiability procedures. How-
ever in the case of APAL, while there is a PSPACE-complete
model-checking procedure [1] and a recursively enumerable,
sound and complete axiomatisation [3], the satisfiability prob-
lem is undecidable with multiple agents [8].

We consider instead a variant of APAL called arbitrary pos-
itive announcement logic (APAL+). We restrict arbitrary
public announcements to positive formulas, so the formula

�+ϕ means that “ϕ is true after the truthful announcement
of any positive formula”. Positive formulas consist only of
positive knowledge statements, such as “it is known that”
rather than “it is not known that”, prohibiting statements
such as the Moore sentence above.

From an applications perspective this is a natural restric-
tion. Many practical knowledge bases are expressed in for-
malisms with restrictions similar to positive formulas, as this
allows for efficient reasoning and querying. For example, the
very large biomedical ontology SNOMED CT is expressed
in a subset of the description logic EL++, which permits ex-
istential quantifiers but not universal quantifiers, allowing



reasoning and querying tasks to be performed in polyno-
mial time [2]. Synthesising epistemic protocols with similar
restrictions would ensure that the protocol can be executed
on such knowledge bases. Network protocol synthesis prob-
lems, such as the sequence-transmission problem, have also
been reasoned about using formalisms where agents send
and receive messages and acknowledgements that are rep-
resented as positive formulas [11, 12]. An agent acknowl-
edges receiving a message by sending the message that they
“know” that the previous message was sent. In this setting
it is not possible to send a denial of receiving a message, as
that would presuppose knowing that the message was sent.

In contrast to public announcements, positive announce-
ments have a number of properties that make their results
easier to reason about. All true positive announcements are
successful, the truth of a positive announcement is preserved
under any subsequent public announcement, and repeating
a positive announcement has no effect. Unlike public an-
nouncements, not every finite sequence of positive announce-
ments can be expressed as a single positive announcement,
so there is a distinction between quantifying over individual
positive announcements and sequences of positive announce-
ments. We conjecture that the restriction to positive formu-
las is enough to make the satisfiability problem decidable.

In this paper we present some preliminary results in APAL+.
In Section 2 we recall the required technical preliminaries,
such as definitions and results from epistemic logic, PAL
and APAL. In Section 3 we introduce the syntax and se-
mantics of APAL+, and present semantics results about the
properties of positive announcements and the arbitrary pos-
itive announcement operators. In Section 4 we show that
the model-checking problem is PSPACE-complete. In Sec-
tion 5 we compare the expressivity of APAL+ to PAL and
APAL, showing that it is equally expressive to PAL for a sin-
gle agent, and strictly more expressive for multiple agents,
and that it is not at least as expressive as APAL for multi-
ple agents. In Section 6 we provide an axiomatisation and
show that it is sound and complete. Finally in Section 7 we
outline on-going work and open questions.

2. TECHNICAL PRELIMINARIES
We recall definitions and technical results from epistemic
logic, public announcement logic [9, 13] and arbitrary public
announcement logic [3].

Let A be a finite set of agents and let P be a countable set
of propositional atoms.

Definition 2.1. An epistemic model M = (S,∼, V ) con-
sists of a domain S , which is a non-empty set of states (or
possible worlds), a set of accessibility relations ∼, indexed
by agents a ∈ A, where ∼a ⊆ S × S is an equivalence re-
lation on states (a relation that is reflexive, transitive and
symmetric), and a valuation V : P → P(S), which is a
function from states to sets of propositional atoms.

The class of all epistemic models is called S5 . A pointed
epistemic model Ms = ((S,∼, V ), s) consists of an epis-
temic model M along with a designated state s ∈ S (the real
world).

Given two states s, t ∈ S , we write s∼at to denote that
(s, t) ∈ ∼a. We write [s]a to denote the a-equivalence class
of s, which is the set of states [s]a = {t ∈ S | s∼at}.
As we will often be required to discuss several models at
once, we will use the convention that Ms = ((S,∼, V ), s),
M ′s′ = ((S′,∼′, V ′), s′), Mγ

sγ = ((Sγ ,∼γ , V γ), sγ), etc.

An epistemic model is an abstract model of the knowledge
of a set of agents, defined over a set of possible worlds.
Atomic propositions are true or false in a world depending
on whether the world appears in the valuation for the atomic
proposition. The accessibility relation for an agent defines
which possible worlds are indistinguishable to the agent. An
agent is said to know a statement is true about a possible
world, such as the real world, if the statement is true in
every world that is indistinguishable to the agent from the
possible world.

Definition 2.2. The language of epistemic logic Lel is
defined inductively as:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ

where p ∈ P and a ∈ A.

We use all of the standard abbreviations for propositional
logic, in addition to the abbreviation Laϕ ::= ¬Ka¬ϕ. The
formula Kaϕ is read as “agent a knows that ϕ is true”, and
Laϕ is read as “agent a considers it possible that ϕ is true”.

We now define the semantics of epistemic formulas on epis-
temic models.

Definition 2.3. Let Ms = ((S,∼, V ), s) ∈ S5 be an
epistemic model. The interpretation of ϕ ∈ Lel in the epis-
temic logic S5 is defined inductively as:

Ms � p iff s ∈ V (p)
Ms � ¬ϕ iff Ms 2 ϕ
Ms � ϕ ∧ ψ iff Ms � ϕ and Ms � ψ
Ms � Kaϕ iff for every t∼as : Mt � ϕ

If Ms � ϕ we say that Ms satisfies ϕ. If Ms � ϕ for every
s ∈ S we say that M satisfies ϕ and we simply write M � ϕ.
If M � ϕ for every M ∈ S5 we say that ϕ is valid in S5
and we simply write � ϕ. If there exists Ms ∈ S5 such
that Ms � ϕ then we say that ϕ is satisfiable. Given an
epistemic model M = (S,∼, V ) ∈ S5 and a formula ϕ we
define [[ϕ]]M ::= {s ∈ S | Ms � ϕ} to be the set of states
where ϕ is satisfied in M .

Example 2.4. Let Ms = ((S,∼, V ), s) ∈ S5 be an epis-
temic model where S = {s, t, u, v}, s∼at, u∼av, s∼bu and
t∼bv, V (p) = {s, t} and V (q) = {u, v}. This model is
represented in Figure 1. The atomic proposition p is true
in every possible world that agent a cannot distinguish from
the real world, s, so we can say that “agent a knows that p
is true in the real world”, written as Ms � Kap. However
agent b cannot distinguish between the real world and a pos-
sible world where p is false, and so Ms � ¬Kbp. We also
have that Mt � ¬Kbp, and so Ms � Ka¬Kbp.



Figure 1: An example of an epistemic model.
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Figure 2: The result of publicly announcing Kap in the epis-
temic model of Figure 1.
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Definition 2.5. The language of public announcement
logic Lpal is defined inductively as:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | [ϕ]ϕ

where p ∈ P and a ∈ A.

We use all of the standard abbreviations for epistemic logic,
in addition to the abbreviation 〈ϕ〉ψ ::= ¬[ϕ]¬ψ.

Definition 2.6. Let M = (S,∼, V ) ∈ S5 be an epis-
temic model and T ⊆ S . We define the restriction of M to
T as M |T = (S |T ,∼|T , V |T ) where:

S |T = T

∼a|T = ∼a ∩ (T × T )

V |T (p) = V (p) ∩ T

Let L be a language with an interpretation on M , and let
ϕ ∈ L. We define the restriction of M to ϕ as M |ϕ =
M |[[ϕ]]M .

A model restriction to a formula ϕ restricts the possible
worlds to those where ϕ was true before the model restric-
tion. This is the basis of public announcements.

Definition 2.7. Let M = (S,∼, V ) ∈ S5 be an epis-
temic model. The interpretation of ϕ ∈ Lpal in the public
announcement logic PAL is the same as its interpretation
in the epistemic logic S5 given in Definition 2.3 along with
the additional inductive case:

Ms � [ϕ]ψ iff if Ms � ϕ then Ms |ϕ � ψ

Example 2.8. Consider the epistemic model Ms from Ex-
ample 2.4. Then [[Kap]]M = {s, t}, and so Ms |Kap is the
model restriction of Ms to the states {s, t}, depicted in Fig-
ure 2. In the resulting model restriction we have that Ms |Kap �
Kbp, and so in the original model we therefore have Ms �
〈Kap〉Kbp. That is, agent b knows that p is true after it is
publicly announced that agent a knows that p is true.

Lemma 2.9. PAL is expressively equivalent to epistemic
logic (for single or multiple agents).

This result is shown by Plaza [13].

Definition 2.10. The language of arbitrary public an-
nouncement logic Lapal is defined inductively as:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | [ϕ]ϕ | �ϕ

where p ∈ P and a ∈ A.

We use all of the standard abbreviations for public announce-
ment logic, in addition to the abbreviation 3ϕ ::= ¬�¬ϕ.

Definition 2.11. Let M = (S,∼, V ) ∈ S5 be an epis-
temic model. The interpretation of ϕ ∈ Lapal in the arbi-
trary public announcement logic APAL is the same as its
interpretation in the public announcement logic PAL given
in Definition 2.7 along with the additional inductive case:

Ms � �ϕ iff for every ψ ∈ Lel : Ms � [ψ]ϕ

Example 2.12. Consider the epistemic model Ms from
Example 2.4. In Example 2.8 we showed that Ms � 〈Kap〉Kbp
so it follows that Ms � 3Kbp.

Proposition 2.13. APAL is expressively equivalent to PAL
for a single agent.

Proposition 2.14. APAL is strictly more expressive than
PAL for multiple agents.

These results are shown by Balbiani, et al. [3].

Definition 2.15. Let M = (S,∼, V ) ∈ S5 and M ′ =
(S′,∼′, V ′) ∈ S5 be epistemic models. A non-empty relation
R ⊆ S×S′ is a bisimulation if and only if for every (s, s′) ∈
R, p ∈ P , and a ∈ A the conditions atoms-p, forth-a and
back-a hold.

atoms-p s ∈ V (p) if and only if s′ ∈ V ′(p).

forth-a For every t∼as there exists t′∼′as′ such that (t, t′) ∈
R.

back-a For every t′∼′as′ there exists t∼as such that (t, t′) ∈
R.

If (s, s′) ∈ R then we call Ms and M ′s′ bisimilar and write
Ms ' M ′s′ .

Lemma 2.16. The relation ' is an equivalence relation
on epistemic models.

Lemma 2.17. Let Ms ,M
′
s′ ∈ S5 be epistemic models such

that Ms ' M ′s′ and let ϕ ∈ Lel be an epistemic formula.
Then Ms � ϕ if and only if M ′s′ � ϕ.



Lemma 2.18. Let M,M ′ ∈ S5 be image-finite epistemic
models (each state has finitely many accessible states) and
let R ⊆ S ×S′ be a relation such that (s, s′) ∈ R if and only
if for every ϕ ∈ Lel : Ms � ϕ if and only if M ′s′ � ϕ. Then
R is a bisimulation.

These are well-known results.

Definition 2.19. Let M,M ′ ∈ S5 be epistemic models
and let Q ⊆ P be a set of propositional atoms. A non-empty
relation R ⊆ S × S′ is a Q-bisimulation if and only if for
every (s, s′) ∈ R, q ∈ Q, and a ∈ A, the conditions atoms-
q, forth-a and back-a hold. If (s, s′) ∈ R then we call Ms

and M ′s′ Q-bisimilar and write Ms 'Q M ′s′ .

We note that analogous results to Lemma 2.16, Lemma 2.17
and Lemma 2.18 apply to Q-bisimulations when we restrict
the language of epistemic formulas to propositional atoms
in Q.

Definition 2.20. Let M,M ′ ∈ S5 be epistemic models.
A non-empty relation R ⊆ S×S′ is a refinement if and only
if for every (s, s′) ∈ R, p ∈ P , and a ∈ A, the conditions
atoms-p and back-a hold. If (s, s′) ∈ R then we call M ′s′
a refinement of Ms and call Ms a simulation of M ′s′ . We
write M ′s′ � Ms or equivalently Ms � M ′s′ .

Definition 2.21. The language of positive formulas L+
el

is defined inductively as:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Kaϕ

where p ∈ P and a ∈ A.

Lemma 2.22. All true positive formulas are preserved un-
der public announcements.

Lemma 2.23. All true positive formulas are successful as
public announcements.

Corollary 2.24. All true positive formulas are idempo-
tent as public announcements.

These results were shown by van Ditmarsch and Kooi [7].

Lemma 2.25. The relation � is a preorder on epistemic
models.

Lemma 2.26. Let Ms ,M
′
s′ ∈ S5 be epistemic models such

that Ms � M ′s′ and let ϕ ∈ L+
el be a positive formula. If

Ms � ϕ then M ′s′ � ϕ.

These results are shown by van Ditmarsch, French and Pinchi-
nat [6].

Lemma 2.27. Let M,M ′ ∈ S5 be image-finite epistemic
models and let R ⊆ S×S′ be a relation such that (s, s′) ∈ R
if and only if for every ϕ ∈ L+

el : if Ms � ϕ then M ′s′ � ϕ.
Then R is a refinement.

This result follows from similar reasoning to Lemma 2.18.

3. SYNTAX AND SEMANTICS
In this section we give the syntax and semantics of APAL+,
and we provide some semantic results about the properties
of positive announcements and the arbitrary positive an-
nouncement operators.

Definition 3.1. The language of arbitrary positive an-
nouncement logic Lapal+ is defined inductively as:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | [ϕ]ϕ | �+ϕ

where p ∈ P and a ∈ A.

We use all of the standard abbreviations for public announce-
ment logic, in addition to the abbreviation 3+ϕ ::= ¬�+¬ϕ.

Definition 3.2. Let M = (S,∼, V ) ∈ S5 be an epis-
temic model. The interpretation of ϕ ∈ Lapal+ in the pos-

itive announcement logic APAL+ is the same as its inter-
pretation in the public announcement logic PAL given in
Definition 2.7 along with the additional inductive case:

Ms � �+ϕ iff for every ψ ∈ L+
el : Ms � [ψ]ϕ

Example 3.3. In Example 2.12 we showed that Ms �
3Kbp, as Ms � 〈Kap〉Kbp. As Kap is a positive formula
it follows also that Ms � 3+Kbp.

An important observation is the partial correspondence be-
tween the results of positive announcements and model re-
strictions that are closed under refinements, a notion that
we will define now.

Definition 3.4. Let M = (S,∼, V ) ∈ S5 be an epis-
temic model and let T ⊆ S be a set of states. We say that
T is closed under refinements in M if and only if for every
s, t ∈ S such that Ms � Mt : if s ∈ T then t ∈ T . We say
that the model restriction M |T is closed under refinements
if and only if T is closed under refinements in M .

Lemma 3.5. The result of any positive announcement is
closed under refinements.

Proof. Let M = (S,∼, V ) ∈ S5 be an epistemic model
and let ϕ ∈ L+

el . Suppose that s, t ∈ S such that s ∈ [[ϕ]]M
and Ms � Mt . Then Ms � ϕ. As Ms � Mt and ϕ ∈ L+

el

then by Lemma 2.26 we have Mt � ϕ. So t ∈ [[ϕ]]M and
therefore M |ϕ is closed under refinements.



Figure 3: An example of an epistemic model with public
announcements that do not correspond to any positive an-
nouncement.
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Lemma 3.6. On finite models, a model restriction that is
closed under refinements is the result of a positive announce-
ment.

Proof. Let M = (S,∼, V ) ∈ S5 be an epistemic model
and let T ⊆ S be a set of states such that M |T is closed
under refinements. Then for every s ∈ T and t ∈ S \ T
we have that s 6� t and as M is finite then by Lemma 2.27
there exists ϕs,t ∈ L+

el such that Ms � ϕs,t but Mt 2 ϕs,t .
Let ϕ =

∨
s∈T

∧
t∈S\T ϕs,t . Then ϕ ∈ L+

el ; for every s ∈ T :

Ms � ϕ; and for every t ∈ S \T : Mt 2 ϕ. So [[ϕ]]M = T and
therefore M |T is the result of a positive announcement.

We use these results to give an example of where public
announcements and positive announcements differ.

Example 3.7. Consider Ms = ((S,∼, V ), s) ∈ S5 , where
S = {s, t, u, v}, s∼at∼au, u∼bv, V (p) = {s} and V (q) =
{s, v}. We note that Mu � Mt , and so by Lemma 3.5
any positive announcement that preserves u must also pre-
serve t. Therefore we have that Ms � �+(KaLbq → Kap),
that is, any positive announcement that results in agent a
knowing that agent b considers q possible will also result
in agent a knowing that p is true. However we note that
Ms � 〈Lbq〉(KaLbq∧¬Kap) and so Ms 2 �(KaLbq → Kap).

Similar reasoning can be used to show that, in contrast
to public announcements, a sequence of positive announce-
ments cannot generally be expressed as a single positive an-
nouncement.

Proposition 3.8. Arbitrary positive announcements are
not composable in S5 , i.e. it is not the case that S5 �
3+3+ϕ→ 3+ϕ for all ϕ ∈ Lapal+ .

Proof. We construct a counter-example.

LetM = (S,∼, V ) where S = {s, t, u, v, w, t′, u′, v′}, s∼at∼at′,
u∼av∼aw, u′∼av′, t∼bu, t′∼bu′, V (p) = {s, t, u, v, t′, u′, v′},
and V (q) = {t, v, t′v′}.

The model M is represented in Figure 4.

We claim that Ms � 3+3+(Laq ∧Ka(Kbq ∨Kb¬q)) but Ms 2
3+(Laq ∧Ka(Kbq ∨Kb¬q)).

We note that Ms |Kap|(Kbq ∨Kb¬q) � Laq ∧ Ka(Kbq ∨
Kb¬q) and so Ms � 3+3+(Laq ∧Ka(Kbq ∨Kb¬q)).

Let R = {(x, x) | x ∈ S}∪{(t, t′), (u, u′), (v, v′), (t′, v′), (s, u′)}.
We note that R is a refinement.

Figure 4: Counterexample for the composability of positive
announcements.
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As Mt � Mt′ then by Lemma 3.5 any positive announce-
ment that preserves t will also preserve t′ so any positive
announcement that results in Laq will preserve t′. As Ms �
Mu′ then by Lemma 3.5 any positive announcement will
preserve u′, so any positive announcement that results in
Laq will also result in ¬Ka(Kbq ∨Kb¬q). Therefore Ms �
�+(Laq → ¬Ka(Kbq∨Kb¬q)) and so Ms 2 3+(Laq∧Ka(Kbq∨
Kb¬q)).

This lack of composability is interesting because it raises
questions about what is possible with finite sequences of pos-
itive announcements of varying lengths. We could introduce
to the language operators of the form 3+n for n ∈ N, where

3+nϕ means that “ϕ is true after the truthful announcement
of some sequence of positive formulas of length n”. This
would be definable through abbreviations in Lapal+ . We
could also introduce an operator 3+∗ for finite sequences of
positive announcements of unbounded length, where 3+∗ϕ
means that “ϕ is true after the truthful announcement of
some finite sequence of positive formulas”. We currently do
not know whether this adds expressivity or complexity to
the logic.

We continue, with the results that positive announcements
have the Church-Rosser and McKinsey properties. The proofs
by Balbiani, et al. [3] of these properties for public an-
nouncements are not valid for positive announcements, so
we present alternative reasoning.

Lemma 3.9. Let Q ⊆ P be a set of propositional atoms
and let Ms ∈ S5 such that Ms 'Q Ms |{s}. Then for every
ϕ ∈ Lapal+ consisting only of atoms from Q: Ms � ϕ if and
only if Ms |{s} � ϕ.

Proof. By induction over subformulas of ϕ, we show for
every subformula ψ of ϕ and every state t ∈ S reachable



from s that Mt � ψ if and only if Ms |{s} � ψ. All inductive
cases are straightforward except perhaps for the case for

�+ψ. We note for every set of states T ⊆ S and every state
t ∈ T that Mt |T 'Q Mt |{t} so by transitivity we have that
Mt |T 'Q Ms |{s}. So for every positive formula ϕ ∈ L+

el

if Mt � �+ψ then Mt |ϕ 'Q Ms |{s} so Ms |{s} � ϕ and
therefore Ms |{s} � �+ϕ.

Proposition 3.10. Arbitrary positive announcements have
the Church-Rosser property in S5 , i.e. S5 � 3+�+ϕ → �+3+ϕ
for all ϕ ∈ Lapal+ .

Proof. Let Ms = ((S,∼, V ), s) ∈ S5 be an epistemic
model and let ϕ ∈ Lapal+ be a formula such that Ms �
3+�+ϕ. Let Q ⊆ P be the set of propositions that appear in
ϕ. We define the formula `Qs =

∧q∈Q
s∈V (q)(q) ∧

∧q∈Q
s /∈V (q)(¬q)

and note that `Qs ∈ L+
el . If Ms � 3+�+ϕ then there is a

positive formula ψ ∈ L+
el such that after announcing ψ every

positive announcement will cause ϕ to be true. Therefore
Ms |ψ � �+ϕ and so Ms |ψ|`Qs � ϕ. However, regardless of
the announcement ψ we have that Ms |ψ|`Qs 'Q Ms |{s}, so
by Lemma 3.9 it follows that Ms |{s} � ϕ. Now suppose
that ψ ∈ L+

el is a positive formula such that Ms � ψ. Then

Ms |ψ|`Qs 'Q Ms |{s}. From above we have that Ms |{s} � ϕ
so by Lemma 3.9 we have that Ms |ψ|`Qs � ϕ, and so Ms �
�+3+ϕ as required.

Proposition 3.11. Arbitrary positive announcements have
the McKinsey property in S5 , i.e. S5 � �+3+ϕ → 3+�+ϕ for
all ϕ ∈ Lapal+ .

Proof. This proof is very similar to the proof for the
Church-Rosser property. Let Ms = ((S,∼, V ), s) ∈ S5 be
an epistemic model and let ϕ ∈ Lapal+ be a formula such
that Ms � �+3+ϕ. Let Q ⊆ P be the set of propositions
that appear in ϕ. Recall the definition of `Qs from the proof
of Proposition 3.10. Then we have that Ms |`Qs � 3+ϕ. We
can see for any positive formula ψ ∈ L+

el that Ms |`Qs |ψ 'Q
Ms |{s}, so by Lemma 3.9 it follows that Ms |{s} � ϕ. By
this reasoning we must also have that Ms |`Qs � �+ϕ and so
Ms � 3+�+ϕ as required.

Finally we note that APAL+, like APAL, is not compact.

A (possibly infinite) set of formulas is satisfiable in a logic
if and only if there exists an epistemic model Ms ∈ S5 that
satisfies every formula from the set. A set of formulas is
finitely satisfiable in a logic if and only if every finite subset
of the set of formulas is satisfiable. A logic is compact if and
only if every finitely satisfiable set of formulas is satisfiable
in the logic.

Proposition 3.12. APAL+ is not compact.

This follows from the same reasoning used by Balbiani, et
al. [3] to show that APAL is not compact. Specifically, a set
of formulas {[ψ](Kap → KbKap) | ψ ∈ L+

el } ∪ {¬�+(Kap →
KbKap)} is demonstrated which is finitely satisfiable but
not satisfiable under the semantics of APAL+.

4. MODEL-CHECKING
In this section we show that the model-checking problem for
APAL+ is PSPACE-complete. The model-checking problem
for APAL+ is to determine for a given formula ϕ ∈ Lapal+

and epistemic model Ms ∈ S5 whether Ms � ϕ. The
model-checking procedure for APAL+ is a simple modifica-
tion of the model-checking procedure for APAL of Ågotnes,
et al. [1] taking advantage of the characterisation of posi-
tive announcements of Lemma 3.5 and Lemma 3.6 as model
restrictions that are closed under refinements.

Lemma 4.1. Let M = (S,∼, V ),M ′ = (S′,∼′, V ′) ∈ S5
be epistemic models. There is a unique, maximal refinement
R ⊆ S×S′ from M to M ′ and it is computable in polynomial
time.

This follows from similar reasoning and using a similar algo-
rithm to the analogous result for bisimulations [10], relaxing
the forth condition appropriately.

Theorem 4.2. The model-checking problem for APAL+

is in PSPACE.

Proof. (Sketch) We note that PSPACE=APTIME [5].
We adapt the APTIME model-checking procedure for APAL
of Ågotnes, et al. [1]. The only modification required is that
when we non-deterministically choose a model restriction we
must ensure that it corresponds to a positive announcement.
From Lemma 3.5 and Lemma 3.6, on finite epistemic models
the results of positive announcements correspond exactly to
those model restrictions that are closed under refinements.
By Lemma 4.1 we can compute the maximal refinement from
a model to itself and determine whether a model restriction
is closed under refinements in polynomial time. Thus the
algorithm remains APTIME.

We note that if we extend APAL+ with the 3+∗ operator for
finite sequences of positive announcements, that the model-
checking problem is still in APTIME, as on finite models
the length of a sequence of non-trivial model restrictions,
where each model restriction removes at least one state, is
bounded by the number of states in the model.

Theorem 4.3. The model-checking problem for APAL+

is PSPACE-hard.

Proof. (Sketch) This follows from the same reasoning
used by Ågotnes, et al. [1] in the setting of APAL, show-
ing that instances of the QBF-SAT problem can be solved
through model-checking a Lapal+ formula on an appropri-
ately constructed model. We note that the model is con-
structed such that each state has a unique valuation, so any
restriction of the model is closed under refinements and is
definable as the result of a positive announcement (actually
a propositional announcement). Therefore the result of any
public announcement on this model is also the result of a
positive announcement, and the interpretation of �+ and �
is the same on this model.



5. EXPRESSIVITY
In this section we compare the expressivity of APAL+ to
PAL and APAL.

If a logic L1 can express all of the semantic properties that
can be expressed in another logic L2 we say that L1 is at
least as expressive as L2 or equivalently that L2 is at most
as expressive as L1. If two logics L1 and L2 are each at
least as expressive as the other we say that L1 is expressively
equivalent to L2, and vice-versa. If L1 is at least as expressive
as L2 and in addition there are semantic properties that can
be expressed in L1 that cannot be expressed in L2 we say
that L1 is strictly more expressive than L2 or equivalently
that L2 is strictly less expressive than L1. If L1 and L2 are
neither at least as expressive than the other then we say
that L1 is incomparable in expressivity to L2.

Theorem 5.1. APAL+ is expressively equivalent to PAL
for a single agent.

Theorem 5.2. APAL+ is strictly more expressive than
PAL for multiple agents.

These results follows from the same reasoning to that used
by Balbiani, et al. [3] to show analogous results for APAL.
It follows that APAL+ is expressively equivalent to APAL
for a single agent, however for multiple agents there is a
different story.

Theorem 5.3. APAL+ is not at least as expressive as
APAL for multiple agents.

Proof. (Sketch) We construct two classes of epistemic
models B and B and show that there is formula in Lapal

that can distinguish between the two classes, but there is no
formula in Lapal+ with this property. We will use just two

agents a, b ∈ A to construct this class. Let M l
sl ,M

r
sr ∈ S5

be disjoint epistemic models. We construct a new model
C(M l

sl ,M
r
sr ) = (S,∼, V ) where:

S = Sl ∪ Sr ∪ {s, t}

∼a =
⋃ ∼la \ {(sl, u), (u, sl) | u ∈ S, u 6= sl},

∼ra \ {(sr, u), (u, sr) | u ∈ S, u 6= sr},
{(sl, s), (s, sl), (s, s), (sr, t), (t, sr), (t, t)}


∼b = ∼lb ∪ ∼rb ∪ {(s, s), (s, t), (t, s), (t, t)}
∼c = ∼lc ∪ ∼rc ∪ {(s, s), (t, t)} for c ∈ A \ {a, b}

V (p) = V l(p) \ {sl} ∪ V r(p) \ {sr} ∪ {s, t}
V (q) = V l(q) ∪ V r(q) for q ∈ P \ {p}

Let B be the class of pointed models C(M l
sl ,M

r
sr )s where

M l
sl and Mr

sr are agree on all epistemic formulas, and let B
be the class of models C(M l

sl ,M
r
sr )s where M l

sl and Mr
sr do

not agree on all epistemic formulas. Then B � �(KbKap ∨
Kb¬Kap). That is, any public announcement that removes
sl must also remove sr and vice-versa. This is a direct con-
sequence of sl and sr agreeing on all epistemic formulas.

Figure 5: Constructions used for Theorem 5.3
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Likewise, B 2 �(KbKap ∨ Kb¬Kap). That is, there is a
public announcement that can remove sl without removing
sr and vice-versa. This is a direct consequence of sl and sr

not agreeing on all epistemic formulas.

Let ϕ ∈ Lapal+ be a formula of arbitrary positive announce-
ment logic.

We define the epistemic model M ′0 = ((S′,∼′, V ′), 0) where:

S′ = N
∼′a = {(n, n), (n, n+ 1), (n+ 1, n), (n+ 1, n+ 1)

| n ∈ N, n is even}
∼′b = {(n, n), (n, n+ 1), (n+ 1, n), (n+ 1, n+ 1)

| n ∈ N, n is odd}
V ′(q) = {0}

We also define the epistemic modelM ′′0 = M ′0|{n ∈ N | n ≤ d(ϕ)},
the restriction of M to states less than or equal to the modal
depth of ϕ.

We note that M ′0 'd(ϕ) M ′′0 , so the two models agree on
all epistemic formulas with modal depth less than or equal
to d(ϕ). We also note for every n ≥ m > 0 that M ′n �
M ′m and for every d(ϕ) ≥ n ≥ m > 0 that M ′′n � M ′′m.
So for both models the only non-trivial model restrictions
that are closed under refinements is the restriction to {0},
where M ′0|{0} ' M ′′0 |{0}, and the restriction to N \ {0}
where M ′n|N \ {0} ' M ′′n |N \ {0} for every n ∈ N, so the
interpretation of 3+ and �+ operators must be the same in
corresponding states of each model. Therefore both models
agree on all arbitrary positive announcement formulas with
modal depth less than or equal to d(ϕ).

However the two models do not agree on all epistemic for-
mulas. In M ′′, every state can reach a state where q is true
in at most d(ϕ) steps, but this is not the case for M ′.

Thus C(M ′0,M
′′
0 )s satisfies ϕ if and only if C(M ′0,M

′
0)s sat-

isfies ϕ. It follows that ϕ cannot distinguish B from B and
therefore APAL+ not at least as expressive as APAL.

We conjecture that APAL+ is incomparable to APAL.



6. AXIOMATISATION
In this section we provide a sound and complete axiomati-
sation for arbitrary positive announcement logic. The ax-
iomatisation is essentially a modified version of the axioma-
tisation for arbitrary public announcement logic given by
Balbiani, et al. [3, 4], but with restrictions to positive an-
nouncements in appropriate axioms.

Definition 6.1. Consider a new symbol ]. The necessity
forms are defined inductively as:

ψ(]) ::= ] | (ϕ→ ψ(])) | [ϕ]ψ(]) | Kaψ(])

where ϕ ∈ Lapal+ and a ∈ A.

The possibility forms are defined inductively as:

ψ(]) ::= ] | (ϕ ∧ ψ(])) | 〈ϕ〉ψ(]) | Laψ(])

where ϕ ∈ Lapal+ and a ∈ A.

A possibility form is the dual of a necessity form. Neces-
sity and possibility forms contain a unique occurrence of
the symbol ]. If ψ(]) is a necessity or possibility form and
ϕ ∈ Lapal+ , then ψ(ϕ) is ψ(])[ϕ/]] and ψ(ϕ) ∈ Lapal+ .

The axiomatisation APAL+ is given below.

Definition 6.2. The axiomatisation APAL+ is a substi-
tution schema consisting of the axioms and rules:

P All propositional tautologies
K ` Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ)
T ` Kaϕ→ ϕ
4 ` Kaϕ→ KaKaϕ
5 ` ¬Kaϕ→ Ka¬Kaϕ
AP ` [ϕ]p↔ (ϕ→ p)
AN ` [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)
AC ` [ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ)
AK ` [ϕ]Kaψ ↔ (ϕ→ Ka[ϕ]ψ)
AA ` [ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ
A+ ` �+ϕ→ [ψ]ϕ where ψ ∈ L+

el

MP From ` ϕ and ` ϕ→ ψ infer ` ψ
NecK From ` ϕ infer ` Kaϕ
NecA From ` ϕ infer ` [ψ]ϕ
R+ω From ` ν([ψ]ϕ) for every ψ ∈ L+

el infer ν(�+ϕ)

where ν(]) is a necessity form.

If ` ϕ we say that ϕ is provable using the axiomatisation
APAL+. If Γ ⊆ Lapal+ is a set of formulas and there are
γ1, . . . , γn ∈ Γ such that ` (γ1 ∧ · · · ∧ γn) → ϕ we say that
ϕ is deducible from Γ and we write Γ ` ϕ. If Γ 0 ⊥ we
say that Γ is consistent. If every formula provable using
an axiomatisation for a logic is valid in the semantics of
the logic we say that the axiomatisation is sound. If every
formula valid in the semantics of a logic is provable using an
axiomatisation for a logic we say that the axiomatisation is
(weakly) complete. If every set of formulas that is consistent
according to an axiomatisation for a logic is satisfiable in
the semantics of the logic we say that the axiomatisation is
strongly complete.

Theorem 6.3. The axiomatisation APAL+ is sound and
strongly complete for the logic APAL+.

Proof. The soundness of the axiomatisation is evident as
the axiom A+ and the rule R+ follow the semantics of the

�+ operator, and all remaining axioms and rules are standard
from epistemic logic and public announcement logic.

The completeness proof proceeds exactly as in [4], with ap-
propriate restrictions to positive announcements in the cases
of A+ and R+. For clarity we show these cases are indeed
correct.

The completeness proof is with a standard canonical model
technique. The set of states S is defined to be the set of all
maximally consistent sets of Lapal+ formulas. The accessi-
bility relations ∼a refer only to epistemic formulas Kaϕ and
not to the �+ operator. To show completeness we must show
the Truth Lemma holds: for every maximally consistent set
of formulas s ∈ S and every ϕ ∈ Lapal+ , ϕ ∈ s if and only
if Ms � ϕ. The Truth Lemma is shown by induction on the
formula ϕ. It uses a complexity measure <Size

d on formulas
that we defined identically on Lapal+ as on Lapal . The posi-
tive arbitrary announcement operator �+ only features in the
subinductive case [ψ]�+χ and in the inductive case �+ψ. The
revised proofs for these cases are as follows. The only change
with respect to [4] is the restriction to positive formulas in
the appropriate places.

Case ϕ = [ψ]�+χ. The following conditions are equivalent:

1. [ψ]�+χ.

2. For every θ ∈ L+
el : [ψ][θ]χ ∈ s.

3. For every θ ∈ L+
el : Ms � [ψ][θ]χ.

4. Ms � [ψ]�+χ.

From 2 to 1 we use the derivation rule R+ on the necessity
form [ψ][θ]χ and the closure of maximally consistent sets
under R+. From 1 to 2 we use the axiom A+ and propo-
sitional reasoning. From step 2 to 3 we use the complexity
measure <Size

d , where we observe that [ψ]�+χ contains one
fewer �+ operators than [ψ][θ]χ, which allows us to use the
induction hypothesis. From step 3 to 4 we use the semantics
of the �+ operator.

Therefore [ψ]�+χ ∈ s if and only if Ms � [ψ]�+χ.

Case ϕ = �+ψ. The following conditions are equivalent:

1. �+ψ ∈ s.

2. For every θ ∈ L+
el : [θ]ψ ∈ s.

3. For every θ ∈ L+
el : Ms � [θ]ψ.

4. Ms � �+ψ.

The equivalence between 2 and 3 follows from the fact that
for every epistemic formula θ, [θ]ψ <Size

d �+ψ.

Therefore �+ψ ∈ s if and only if Ms � �+ψ.



We note that APAL+ is an infinitary axiomatisation, as the
rule R+ω requires an infinite number of premises. As in the
axiomatisation of Balbiani, et al. [3] we can simplify this
rule to a finitary rule. To do so we first show that if 3+ϕ is
satisfiable then so is 〈p〉ϕ for some fresh atom p.

Lemma 6.4. Let Ms = ((S,∼, V ), s) ∈ S5 be an epis-
temic model and let ϕ ∈ Lapal+ be a formula such that
Ms � 3+ϕ. Then there exists M ′s′ ∈ S5 such that M ′s′ � 〈p〉ϕ
where p ∈ P does not appear in ϕ.

Proof (Sketch). As Ms � 3+ϕ there exists ψ ∈ L+
el such

that Ms � 〈ψ〉ϕ. Let Q = {qn | n ∈ N} ⊆ P be an infinite
set of atoms not appearing in ϕ or ψ. We define M ′ =
(S′,∼′, V ′) where:

S′ = {>,⊥} × S
∼′a = {((x, s), (y, t)) | x, y ∈ {>,⊥}, s, t ∈ S, s∼at}

V ′(q0) = {>} × [[ψ]]M

V ′(qn+1) = {>,⊥} × V (qn) for every n ∈ N
V ′(p) = {>,⊥} × V (p) for every p ∈ P \Q

We claim that M ′(>,s) � 〈q0〉ϕ. This follows from the fact

that the model restriction M ′(>,s)|q0 is isomorphic to the
model restriction Ms |q0, but with the atoms in Q renamed
and a new atom q0 introduced that is equivalent to >. As
the atoms in Q do not appear in ϕ then the only effect
that changing these variables can have in the interpretation
of ϕ is in the positive announcements that are considered
in interpreting the 3+ and �+ operators of ϕ. We note that
any positive announcement available in M ′(>,s)|q0 has an
equivalent positive announcement available in Ms |q0, and
vice-versa, found by renaming the variables in Q.

Lemma 6.4 can be generalised to possibility forms:

Lemma 6.5. Let Ms = ((S,∼, V ), s) ∈ S5 be an epis-
temic model, let ϕ ∈ Lapal+ , and let ψ(]) be a possibility
form such that Ms � ψ(3+ϕ). Then there exists M ′s′ ∈ S5
such that M ′s′ � 〈p〉ψ(3+ϕ) where p ∈ P does not appear in
ψ(3+ϕ).

As in the axiomatisation of APAL by Balbiani, et al. [3] this
allows us to form a sound and weakly complete finitary ax-
iomatisation by replacing the infinitary rule R+ω in APAL+

with a finitary alternative of the form:

R+1 From ν([p]ϕ) infer ν(�+ϕ)

where ν(]) is a necessity form and p is a fresh atom.

The soundness of R+1 follows from Lemma 6.5, and the
weak completeness of the resulting finitary axiomatisation
follows from the same reasoning as in Balbiani, et al. [3]. As
the resulting axiomatisation is a finitary axiomatisation, it
is recursively enumerable.

7. FUTURE WORK
We have yet to show whether the satisfiability problem for
APAL+ is decidable. The satisfiability problem for APAL+

is to determine for a given formula whether the formula is
satisfiable. As we have given a sound and complete axioma-
tisation this is equivalent to determining for a given formula
whether the formula is provable using the axiomatisation.

While we have shown that APAL+ is not at least as ex-
pressive as APAL, we do not know whether it is strictly
less expressive than APAL or it is incomparable to APAL.
We also have yet to consider in depth the addition of the

3+∗ operator for finite sequences of positive announcements
to the logic, and particularly, how the operator effects the
expressivity, decidability and complexity of the logic.

We conjecture that the satisfiability problem for APAL+ is
decidable and that APAL+ is incomparable in expressivity
to APAL. The main justification for these conjectures is
related to the reason that the proof of undecidability for
APAL [8] would not work directly for APAL+. The proof
that APAL is undecidable relies on the ability to express as
a Lapal formula that two states of an epistemic model agree
on all epistemic formulas. This is possible essentially be-
cause the � operator quantifies over all epistemic formulas.
In APAL+ however the �+ operator is only able to quantify
over positive formulas, enough to express that a state agrees
with all of the positive formulas of another state, but not
enough to express agreement on all epistemic formulas. Con-
versely the � operator of APAL appears to quantify over too
many formulas to express that a state agrees with all of the
positive formulas of another state, and so we conjecture that
there are Lapal+ formulas that do not have equivalent Lapal

formulas and the two logics are incomparable in expressivity.
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