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Abstract—We present a method for synthesising action models
that result in a given post-condition when executed on any
Kripke model. Action models represent social actions that affect
the knowledge or beliefs of agents in multi-agent systems. In
the consideration of action model synthesis, we introduce an
extension of the action model logic of Baltag, Moss and Solecki [4]
with an action model quantifier, ∃φ which stands for “there is an
action model that results in the post-condition φ”. We show that
this quantifier is equivalent to the refinement quantifier of van
Ditmarsch and French [10], and provide a sound and complete
axiomatisation for the resulting logic, along with decidability and
expressivity results.

I. INTRODUCTION

In multi-agent systems, informative updates are events that
lead to agents receiving new information about the world,
whilst leaving the facts of the world itself unchanged. Action
models, as introduced by Baltag, Moss and Solecki [4] are
a model for informative updates in multi-agent systems, used
to compute and reason about the changes in knowledge or
belief that result from performing informative updates. We are
interested in the problem of synthesising action models that
will change the knowledge or beliefs of agents in such a way
that their resulting knowledge or beliefs will satisfy a given
post-condition when the corresponding informative update is
performed.

A public announcement is a simple example of an in-
formative update, where a statement is announced to every
agent at once, usually resulting in the statement becoming
common knowledge to the agents. We can imagine more
complex examples of informative updates, where information
is not necessarily communicated publicly, and where each
agent potentially receives different information. For example:
private announcements, where some agents receive informa-
tion, and the other agents are unsure of what information was
communicated; completely private (or secret) announcements,
where the other agents are not even aware that communication
took place; or deceptive informative updates, where the other
agents may be mislead to believe that different information
was communicated than was actually the case. From the point
of view of the agents, these kinds of informative updates may
involve a degree of uncertainty as to exactly what informative
update is taking place. For example, a player in a game of
poker may privately look at their hand of cards and learn
which cards they are holding. An onlooker will know from
watching that the player has learned which cards they are

holding, but without learning exactly which cards the player
is holding the onlooker will be uncertain as to exactly what
the player has learned as a result of looking at their cards.
From the onlooker’s perspective there is the possibility that
one of several informative updates has actually occurred, each
informative update corresponding to a possible hand of cards
that the player could have been dealt.

Action models generalise the kinds of informative updates
we have mentioned so far. In epistemic logics, the knowledge
of a collection of agents is represented by a relational struc-
ture known as a Kripke model, where relationships between
“possible worlds” represent an agent’s uncertainty about which
possible world is the real one. Action models are similar rela-
tional structures, where relationships between “action points”
represent an agent’s uncertainty as to which action actually
occurred; thus it is possible for an action model to comprise
multiple actions, allowing for informative updates where each
agent potentially receives different information, where agents
may have uncertainty about which action really occurred, and
where information may be communicated publicly, privately
or otherwise. An action model (representing an informative
update) may be executed on a Kripke model (representing
an initial state of knowledge) to yield a new Kripke model
(representing the state of knowledge resulting from performing
the informative update from the initial knowledge state). The
paper by Baltag and Moss [3] considers numerous examples of
informative updates and their representations as action models.

The action model logic introduced by Baltag, Moss and
Solecki [4] extends modal epistemic logics with an operator
for reasoning about the effects of a specific informative update,
represented by an action model. The statement [α]φ stands
for “φ is true after performing the informative update α”.
Baltag, Moss and Solecki [4] provide a sound and complete
axiomatisation for the action model logic and show that it is
decidable and expressively equivalent to its underlying modal
logic. Baltag and Moss [3] show that the action model logic is
a generalisation of other logics that introduce similar operators
for more restricted varieties of informative updates, such as the
logics of public announcements of Plaza [18] and Gerbrandy
and Groenvald [13], the logic of completely private announce-
ments to groups of agents of Gerbrandy and Groenvald [13],
and the logic of common knowledge of alternatives of Baltag,
Moss and Solecki [4] and van Ditmarsch [9].

In the present work, we are interested in the problem of



action model synthesis. We aim, for a given post-condition φ,
to find an action model α that will result in φ becoming true
when it is executed on any Kripke model. Of course it is often
the case that whether there is any action model that can result
in a given post-condition will depend on the particular Kripke
model that we are interested in executing it on. We therefore
concurrently try to answer the question of whether for any
particular Kripke model there exists an action model that will
result in a given post-condition. To these ends we introduce
the arbitrary action model logic, extending the action model
logic of Baltag, Moss and Solecki [4] with an action model
quantifier, ∃φ which stands for “There is an action model that
results in the post-condition φ ”. Action model quantifiers
allow us to pose questions about which post-conditions can
and cannot be achieved through the execution of arbitrary
action models. We use action model quantifiers in our action
model synthesis results, to produce action models that will
result in a given post-condition in any Kripke model where
the post-condition can be achieved through an action model.

The question of quantifying over informative updates such
as action models has previously been considered in set-
tings with different models for informative updates. When
the informative updates we consider are restricted to public
announcements, we get the arbitrary public announcement
logic, introduced by Balbiani, et al. [2]. The arbitrary action
model logic was suggested by Balbiani, et al. as a possible
generalisation of the arbitrary action model logic. A similar
logic, the group announcement logic of Ågotnes, et al. [1],
quantifies over public announcements that specifically consist
of a conjunction of statements that are each known by at least
one agent in a given group of agents. Yet another similar logic,
the refinement modal logic of van Ditmarsch and French [10]
quantifies over all of the refinements of a Kripke model, where
refinements can be said to correspond to the results of all
possible informative updates.

In this paper we relate the action model quantifier to the
refinement quantifier of van Ditmarsch and French [10]. In
addition to our action model synthesis result, we show that
the action model quantifier is equivalent to the refinement
quantifier, and for the arbitrary action model logic we provide
a sound and complete axiomatisation, show that it is expres-
sively equivalent to modal logic, and show that it is decidable.

II. TECHNICAL PRELIMINARIES

We recall a number of definitions from modal logic, the
refinement modal logic of van Ditmarsch and French [10],
and the action model logic of Baltag, Moss and Solecki [4].

Let P be a non-empty, countable set of propositional atoms,
and let A be a non-empty, finite set of agents.

Definition II.1 (Kripke model). A Kripke model M =
(S,R, V ) consists of a domain S, which is a non-empty set of
states (or possible worlds), an accessibility function R : A→
P(S × S), which is a function from agents to accessibility
relations on S, and a valuation function V : S → P(P ),
which is a function from states to sets of propositional atoms.

The class of all Kripke models is called K. A pointed
Kripke model Ms = (M, s) consists of a Kripke model
M = (S,R, V ) along with a designated state s ∈ S.

We write Ra to denote R(a). Given two states s, t ∈ S, we
write sRat to denote that (s, t) ∈ Ra. We write sRa to denote
the set of states {t ∈ S | sRat} and write Rat to denote the
set of states {s ∈ S | sRat}. As we will often be required
to discuss several models at once, we will use the convention
that M = (S,R, V ), M ′ = (S′, R′, V ′), Mγ = (Sγ , Rγ , V γ),
etc.

Definition II.2 (Bisimulation). Let M = (S,R, V ) and M ′ =
(S′, R′, V ′) be Kripke models. A non-empty relation R ⊆
S × S′ is a bisimulation if and only if for every a ∈ A and
(s, s′) ∈ R the following, atoms, forth-a and back-a, holds:

atoms: V (s) = V ′(s′)
forth-a: for every t ∈ sRa there exists a t′ ∈ s′R′a such

that (t, t′) ∈ R.
back-a: for every t′ ∈ s′R′a there exists a t ∈ sRa such

that (t, t′) ∈ R.
If (s, s′) ∈ R then we call Ms and M ′s′ bisimilar, and write

Ms↔M ′s′ to denote that there is a bisimulation between Ms

and M ′s′ .

Proposition II.1. The relation ↔ is an equivalence relation.

This is a well-known result in modal logic; see Blackburn,
de Rijke and Venema [6].

Definition II.3 (Simulation and refinement). Let B ⊆ A and
let M and M ′ be Kripke models. A non-empty relation R ⊆
S × S′ is a B-simulation if and only if it satisfies atoms,
forth-a for every a ∈ A and back-a for every a ∈ A \B.

If (s, s′) ∈ R then we call M ′s′ a B-simulation of Ms

and call Ms a B-refinement of M ′s′ . We write M ′s′→BMs or
equivalently Ms←BM

′
s′ to denote this.

In the case where B = A we use the terms simulation and
refinement in place of A-simulation and A-refinement, and
we write M ′s′→Ms or equivalently Ms←M ′s′ . In the case
where B = {a} for some a ∈ A we simply use the terms
a-simulation and a-refinement, and we write M ′s′→aMs or
equivalently Ms←aM

′
s′ .

Proposition II.2. The relation ←B is a preorder.

This is shown by van Ditmarsch and French [10].

Proposition II.3. Let B ⊆ A and let Ms,M
′
s′ be Kripke

models such that Ms↔M ′s′ . Then M ′s′←BMs.

This follows trivially from the Definition II.2 and Defini-
tion II.3.

Definition II.4 (Action model). Let L be a logical language.
An action model N = (S,R, pre) with preconditions defined
on L consists of a domain S, which is a non-empty, finite set
of action points, an accessibility function R : A→ P(S× S),
which is a function from agents to accessibility relations on S,
and a precondition function pre : S → L, which is a function
from action points to formulae from L.



The class of all action models is called AM. A pointed
action model Nu = (N, u) consists of an action model
N = (S,R, pre) along with an action point u ∈ S. A multi-
pointed action model NT = (N,T) consists of an action model
N = (S,R, pre) along with a set of action points T ⊆ S.

We use the same abbreviations and conventions for action
models as are used for Kripke models. We use the convention
of using sans-serif fonts for action models, as in Nu and italic
fonts for Kripke models, as in Ms.

III. SYNTAX AND SEMANTICS

Here we define the syntax and semantics of the arbitrary
action model logic.

Definition III.1 (Language of arbitrary action model logic).
The language L⊗∀ of arbitrary action model logic is induc-
tively defined as:

φ ::= p | ¬φ | (φ ∧ φ) | �aφ | [NT]φ | ∀Bφ

where p ∈ P , a ∈ A, B ⊆ A, and NT ∈ AM is a
multi-pointed action model with preconditions defined on the
language L⊗∀.

We use all of the standard abbreviations for propositional
logic, in addition to the abbreviations ♦aφ ::= ¬�a¬φ,
〈NT〉φ ::= ¬[NT]¬φ and ∃Bφ ::= ¬∀B¬φ.

We refer to the language L⊗ of action model logic, which is
L⊗∀ without the ∀B operator, to the language L∀ of refinement
modal logic, which is L⊗∀ without the [α] operator, the
language L of modal logic, which is L∀ without the ∀B
operator, and the language L0 of propositional logic, which
is L without the �a operator. Note that for the sublanguage
L⊗ we restrict the language that the preconditions of action
models are defined over to be L⊗.

We also use the cover operator of Janin and Waluki-
wicz [17], following the definitions given by Bı́lková, Palmi-
giano, and Venema [5]. The cover operator, ∇aΓ is an abbre-
viation defined by ∇aΓ ::= �a

∨
γ∈Γ γ ∧

∧
γ∈Γ ♦aγ, where Γ

is a finite set of formulae. We note that the modal operators
�a, ♦a and ∇a are interdefineable, as �aφ↔ ∇a{φ} ∨∇a∅
and ♦aφ↔ ∇a{φ,>}. This is the basis of the axiomatisation
for refinement modal logic, and plays an important part in our
action model synthesis result. The cover operator allows us to
define normal forms for modal logics that allow us to only con-
sider conjunctions of modalities in specific situations when we
define axiomatisations and provably correct translations. This
was previously used as the basis of several axiomatisations of
refinement modal logics [11], [15], [14], [16], [7].

The semantics of the arbitrary action model logic builds
upon the semantics of the modal logic, the action model logic,
and the refinement modal logic, so we define the semantics for
these logics first.

Definition III.2 (Semantics of modal logic). Let M =
(S,R, V ) ∈ K. The interpretation of φ ∈ L in the logic K

Fig. 1. The Kripke model MH .
Alice and Bob are initially uncer-
tain about what the coin has landed
on.

Fig. 2. The Kripke model
M(H,H). After Alice has looked at
the coin, she knows that the coin
has landed heads up.

is defined inductively as:

Ms � p iff p ∈ V (s)

Ms � ¬φ iff Ms 2 φ
Ms � φ ∧ ψ iff Ms � φ and Ms � ψ

Ms � �aφ iff for every t ∈ sRa: Mt � φ

The Kripke semantics for modal logic are well-known; see
Blackburn, de Rijke and Venema [6].

In epistemic logics, the formula �aφ is often read as “a
knows φ” or “a believes φ”. Its dual ♦aφ is often read as “a
considers φ possible”. We give an example of a multi-agent
system involving knowledge.

We say that a formula φ is satisfied by a pointed Kripke
model Ms ∈ K if and only if Ms � φ. We say that φ is
satisfied by a Kripke model M = (S,R, V ) ∈ K and we
write M � φ if and only if Ms � φ for every s ∈ S. We say
that φ is valid in a class of Kripke models K and we write
K � φ if and only if M � φ for every M ∈ K.

Example III.1. Alice and Bob are about to play a nice game
of chess, and have agreed to decide who moves first through a
fair coin toss. Alice tosses the coin, but it lands too far away
for either person to tell which side has landed face up.

If we let h stand for the proposition “The coin has landed
heads up” (and the negation ¬h stands for “The coin has
landed tails up”) then this situation is represented by the
Kripke model M = (S,R, V ) where S = {H,T}, Ra =
Rb = {(H,H), (H,T ), (T,H), (T, T )}, V (H) = {h} and
V (T ) = ∅. This is shown in Figure 1. The state MH represents
the possible world where the coin has landed heads up, whilst
the state MT represents the possible world where the coin has
landed tails up.

Suppose that in reality the coin has landed heads up. Then
the pointed Kripke model MH represents the real world. About
this situation we can say MH � ♦ah ∧ ♦a¬h meaning that
Alice considers possible both that the coin may have landed
heads up or that it may have landed tails up. Equivalently
we can say MH � ¬�ah ∧ ¬�a¬h meaning that Alice does
not know that the coin has landed heads up, nor does she
know that the coin has landed tails up. We can also say
MH � �b(¬�ah ∧ ¬�a¬h) meaning that Bob knows that
Alice doesn’t know whether the coin has landed heads up or
tails up.

Definition III.3 (Semantics of action model logic). Let M =
(S,R, V ) ∈ K.

We first define action model execution. Let N ∈ AM be
an action model. We denote the result of executing the action



model N on the Kripke model M as M ⊗ N, and we define
the result as M ⊗ N = M ′ = (S′, R′, V ′) where:

S′ = {(s, u) | s ∈ S, u ∈ S,Ms � pre(u)}
(s, u)R′a(t, v) iff sRat and uRav

V ′((s, u)) = V (s)

We also define pointed action model execution as Ms⊗Nu =
(M ⊗ N)(s,u). Note that Ms ⊗ Nu is defined if and only if
(s, u) ∈ S′, if and only if Ms � pre(u).

Then the interpretation of φ ∈ L⊗ in the logic K⊗ is the
same as its interpretation in modal logic (Definition III.2), with
the additional inductive cases:

Ms � [Nu]φ iff Ms � pre(u) implies Ms ⊗ Nu � φ

Ms � [NT]φ iff for every u ∈ T : Ms � [Nu]φ

The semantics of action model logic are given by Baltag,
Moss and Solecki [4].

The formula [MT]φ can be read as “After successfully
performing the informative update MT, φ is true”. Its dual
〈MT〉φ can be read as “The informative update MT can be
successfully performed, and afterwards φ is true”. We give
another example involving changes of knowledge in a multi-
agent system.

Example III.2. Continuing from Example III.1, suppose that
Alice now decides to walk over to look at the coin, while Bob
watches from a distance. We can represent the informative
update of Alice looking at the coin by the action model
N = (S,R, pre) where S = {H,T}, Ra = {(H,H), (T,T)},
Rb = {(H,H), (H,T), (T,H), (T,T)}, pre(H) = h and
pre(T) = ¬h.

The result of performing the informative update
N on the initial state M from Example III.1 is
M ′ = M ⊗ N = (S′, R′, V ′) where S′ = {(H,H), (T,T)},
R′a = {((H,H), (H,H)), ((T,T), (T,T))}, R′b =
{((H,H), (H,H)), ((H,H), (T,T)), ((T,T), (H,H)),
((T,T), (T,T))}, V ′((H,H)) = ∅ and V ′((T,T)) = {h}.
This is shown in Figure 2.

In reality the coin has landed heads up, so according to
the preconditions of the action model the only action that
could have occurred is that represented by the action point
H. Then the pointed Kripke model M ′(H,H) represents the
real world after performing the informative update. We can
make statements about what is true in this resulting state by
using action model operators in the initial state. We can say
MH � [NH]�ah meaning that after the informative update,
Alice knows that the coin has landed heads up. We can also say
MH � [NH]¬�bh, meaning that after the informative update
Bob (still) does not know that the coin has landed heads up.
We can also say that MH � [NH]�b(�ah ∨ �a¬h) meaning
that after the informative update Bob knows that Alice knows
either that the coin has landed heads up or that it has landed
tails up.

Baltag and Moss [3] provide many more examples of
informative updates and their representations as action models.

Definition III.4 (Semantics of refinement modal logic). Let
M = (S,R, V ) ∈ K. The interpretation of φ ∈ L∀ in
the logic K∀ is the same as its interpretation in modal logic
(Definition III.2), with the additional inductive case:

Ms � ∀Bφ iff for every M ′s′ ∈ K such that
M ′s′←BMs : M ′s′ � φ

The semantics of refinement modal logic are given by
van Ditmarsch and French [10]. We use an alternative but
equivalent semantics in terms of B-refinements, first used by
Hales, French and Davies [16].

The formula ∀Bφ can be read as “For every B-refinement,
φ holds”. Its dual ∃Bφ can be read as “There exists a B-
refinement such that φ”.

Example III.3. Continuing from Examples III.1 and III.2, we
note that the Kripke model M ′(H,H) is an a-refinement of MH ,
i.e. M ′(H,H)

←aMH . We can make statements about the a-
refinements of the initial state by using refinement quantifiers
in the initial state. For example, we can say MH � ∃a�ah
meaning that there is an a-refinement of the initial state where
�ah is true.

Before moving on to define the semantics of the arbitrary
action model logic, we will make some remarks about the
relationships between action models and refinement.

The refinement modal logic was introduced by van Dit-
marsch and French [10] as a logic for quantifying over the
results of informative updates. The statement ∃φ is intended
to be read as “there exists an informative update after which
φ is true”. van Ditmarsch and French [10] give several results
to justify the position that the refinements of a Kripke model
correspond to the results of all possible informative updates.
One such result is that the result of any action model execution
is a refinement.

Proposition III.1. Let Nu ∈ AM be an action model and
let Ms ∈ K be a Kripke model such that Ms � pre(u). Then
Ms ⊗ Nu←Ms.

This is shown by van Ditmarsch and French [10].
The converse also holds in the case of finite Kripke models:

the refinements of a finite Kripke model correspond to the
results of an action model execution.

Proposition III.2. Let Ms,M
′
s′ ∈ K be Kripke models such

that Ms is finite and M ′s′←Ms. Then there exists an action
model Nu ∈ AM such that Ms ⊗ Nu↔M ′s′ .

This is also shown by van Ditmarsch and French [10]. We
note however that we do not have this result in the case of
refinements of infinite Kripke models.

Further to this, refinements represent monotonic changes
in knowledge or belief, as do action models. In particular,
positive formulae preserve truth under refinements of Kripke
models.

Definition III.5 (Positive formulae). Let B ⊆ A. The B-



positive formulae are defined inductively as:

φ ::= p | ¬p | φ ∧ φ | φ ∨ φ | �aφ | ♦cφ

where p ∈ P , a ∈ A and c ∈ A \B.

Proposition III.3. Let B ⊆ A, let φ be a B-positive formula,
and let Ms,M

′
s′ ∈ K such that M ′s′←BMs. Then Ms � φ

implies M ′s′ � φ.

This is shown by van Ditmarsch and French [10] for the
case of A-positive formulae. The generalisation to B-positive
formulae where B ⊆ A is straight-forward.

The intuition behind this result is that informative updates
can only provide agents with new information and cannot
revise information that agents already have. Therefore any-
thing that an agent knows before an informative update,
they should continue to know afterwards. This is not quite
accurate in the case where an agent knows something about
another agent’s ignorance. For example, in the initial state of
Example III.1, Bob knows that Alice doesn’t know whether
the coin has landed heads up or tails up. However after
the informative update of Example III.2, Alice learns which
side the coin landed on, and Bob learns that Alice knows
which side the coin landed on, thus invalidating Bob’s initial
knowledge about Alice’s ignorance. This result also gives a
partial characterisation of the notion of a B-refinement as
opposed to an (A-)refinement: a B-refinement corresponds to
an informative update in which only agents in B may learn
directly about the world, whilst agents not in B may only
learn about the changes in knowledge of other agents. For
example, in the initial state of Example III.1 Bob does not
know that the coin has landed heads up, which we can denote
by MH � ¬�bh, or equivalently MH � ♦b¬h. As this is an
a-positive formula, its truth is preserved by any a-refinement,
and so it is not possible for Bob to learn about the state of
the coin through any informative update that results in an a-
refinement, such as the informative update from Example III.2.

We now introduce the semantics of arbitrary action model
logic.

Definition III.6 (Semantics of arbitrary action model logic).
Let M = (S,R, V ) ∈ K. The interpretation of φ ∈ L⊗∀
in the logic K⊗∀ is the same as its interpretation in action
model logic (Definition III.3), with the additional inductive
case for the refinement quantifier of refinement modal logic
(Definition III.4).

We note that, unintuitively, the semantics of Definition III.6
do not define the quantifier in terms of action models, but
rather in terms of refinements. Semantics defined in terms of
action models are as follows.

Definition III.7 (Restricted action models). Let B ⊆ A and let
N ∈ AM. Then N is a B-restricted action model if and only
if for every u ∈ S and every Ms ∈ K such that Ms � pre(u)
we have Ms ⊗ Nu←BMs. We call the class of B-restricted
action models AMB .

Definition III.8 (Alternative semantics of arbitrary action
model logic). Let M = (S,R, V ) ∈ K. The interpretation
of φ ∈ L⊗∀ in the logic K⊗∀ is the same as its interpretation
in action model logic (Definition III.3), with the additional
inductive case:

Ms � ∀Bφ iff for every Nu ∈ AMB : Ms � [Nu]φ

Our eventual goal is to show that the semantics of Def-
initions III.6 and III.8 are equivalent for the class K of all
Kripke models. However for now we use the semantics of
Definition III.6, that define the quantifier in terms of refine-
ments. In Section IV this allows us to use existing results from
refinement modal logic to provide a sound and complete ax-
iomatisation, along with expressivity and decidability results.
We use these results in Section V to provide our action model
synthesis results. A corollary of the action model synthesis
result will then be that the semantics of Definition III.6 and
Definition III.8 are equivalent.

Finally we give some results that we use later.

Proposition III.4. Let φ ∈ L and let Ms,M
′
s′ ∈ K such that

Ms↔M ′s′ . Then Ms � φ if and only if M ′s′ � φ.

This is a well-known result in modal logic; see Blackburn,
de Rijke and Venema [6].

Definition III.9 (Bisimulation of action models). Let
N = (S,R, pre) and N′ = (S′,R′, pre′) be action models with
preconditions defined on L⊗. A non-empty relation R ⊆
S× S′ is a bisimulation if and only if for every a ∈ A and
(u, u′) ∈ R the following, pre, forth-a and back-a, holds:

pre: ` pre(u)↔ pre′(u′)
forth-a: for every v ∈ uRa there exists a v′ ∈ u′R′a such

that (v, v′) ∈ R.
back-a: for every t′ ∈ u′R′a there exists a v ∈ uRa such

that (v, v′) ∈ R.
If (u, u′) ∈ R then we call Nu and N′u′ bisimilar, and write

Nu↔N′u′ to denote that there is a bisimulation between Nu

and N′u′ .

This definition is given by van Ditmarsch, van der Hoek
and Kooi [12, p. 158].

Proposition III.5. Let Nu,N
′
u′ ∈ AM be action models such

that Nu↔N′u′ , and let Ms ∈ K be a Kripke model such that
Ms � pre(u). Then Ms ⊗ Nu↔Ms ⊗ N′u′ .

This is shown by van Ditmarsch, van der Hoek and
Kooi [12, p. 158].

Definition III.10 (Cover disjunctive normal form). A formula
in cover disjunctive normal form is defined inductively by:

α ::= π ∧
∧
b∈B

∇bΓb | α ∨ α

where π ∈ L0, B ⊆ A and for every b ∈ B, Γb is a finite set
of formulae in cover disjunctive normal form.

Proposition III.6. Every formula of L is equivalent to a
formula in cover disjunctive normal form.



This is shown by Hales [14] and Bozzelli, et al. [7]. The
cover logic disjunctive normal form is used in the complete-
ness proofs of Section IV and in the action model synthesis
result of Section V.

IV. AXIOMATISATION

In this section we provide a sound and complete axioma-
tisation for the arbitrary action model logic K⊗∀. We first
recall the well-known axiomatisation K for modal logic K, the
axiomatisation AMLK for action model logic K⊗, given by
Baltag, Moss and Solecki [4], and the axiomatisation RMLK

for refinement modal logic K∀, given by Hales [14] and
Bozzelli, et al. [7].

Definition IV.1 (Axiomatisation K). The axiomatisation K is
a substitution schema consisting of the following axioms:

P All propositional tautologies
K �a(φ→ ψ)→ (�aφ→ �aψ)

Along with the rules:

MP From ` φ→ ψ and ` φ, infer ` ψ
NecK From ` φ infer ` �aφ

We say that a formula φ is provable under an axiomatisation,
and we write ` φ if and only if it can be derived using some
finite sequence of axioms and rules from that axiomatisation.
When we are discussing provability, it should be clear from
context which axiomatisation we are using.

Lemma IV.1. The axiomatisation K is sound and complete
with respect to the logic K.

Soundness and completeness of K are well-known results;
see Blackburn, de Rijke and Venema [6].

Definition IV.2 (Axiomatisation AMLK). The axiomatisation
AMLK is a substitution schema consisting of the rules and
axioms of K along with the axioms:

AP [Nu]π ↔ (pre(u)→ π) for π ∈ L0

AN [Nu]¬φ↔ (pre(u)→ ¬[Nu]φ)
AC [Nu](φ ∧ ψ)↔ ([Nu]φ ∧ [Nu]ψ)
AK [Nu]�aφ↔ (pre(u)→

∧
v∈uRa �a[Nv]φ)

AU [NT]φ↔
∧

u∈T[Nu]φ

and the rule:

NecA From ` φ infer ` [Nu]φ

Proposition IV.2. The axiomatisation AMLK is sound and
complete with respect to the logic K⊗.

Soundness and completeness are shown by Baltag, Moss
and Solecki [4]. The completeness of AMLK is shown via a
provably correct translation from L⊗ to the sublanguage of L.
As the axiomatisation AMLK contains the rules and axioms
of K, which are complete with respect to the class of Kripke
models for formulae in L, this shows the completeness of
AMLK.

The translation is performed on a formula by iteratively
selecting subformulae of the form [NT]φ, where φ ∈ L.

The axiom AU is used to expand multi-pointed action model
executions into single-pointed action model executions, the
axioms AN, AC and AK are used to push the [Ns] operators
inside negations, conjunctions and modalities, and the axiom
AP is used to remove [Ns] operators once they are only applied
to propositional formulae. This process is repeated until there
are no [NT] operators left in the formula.

Definition IV.3 (Axiomatisation RMLK). The axiomatisation
RMLK is a substitution schema consisting of the rules and
axioms of K along with the axioms:

R ∀B(φ→ ψ)→ (∀Bφ→ ∀Bψ)
RP ∀Bπ ↔ π where π is a propositional formula
RK ∃B∇aΓa ↔

∧
γ∈Γ

♦a∃Bγ where a ∈ B

RComm ∃B∇aΓa ↔ ∇a{∃Bγ | γ ∈ Γa} where a /∈ B
RDist ∃B

∧
c∈C
∇cΓc ↔

∧
c∈C
∃B∇cΓc where C ⊆ A

and the rule:

NecR From ` φ infer ` ∀Bφ

Proposition IV.3. The axiomatisation RMLK is sound and
complete with respect to the logic K∀.

Soundness and completeness are shown by Hales [14] and
Bozzelli, et al. [7]. Similar to the axiomatisation AMLK,
the completeness of RMLK is shown via a provably correct
translation from L∀ to the sublanguage of L.

As the sublanguage of L is complete with respect to the
class of Kripke models using the axioms and rules of K, which
are also included in RMLK, this shows the completeness of
RMLK. As the axiomatisation RMLK contains the rules and
axioms of K, which are complete with respect to the class of
Kripke models for formulae in L, this shows the completeness
of K∀.

The translation is performed on a formula by iteratively
selecting subformulae of the form ∃Bφ, where φ ∈ L. The
subformula φ is converted to cover disjunctive normal form,
and then the axioms R, RP, RK, RComm and RDist are
used to push the ∃B operator inwards, inside disjunctions,
conjunctions and cover operators. Once all ∃B operators are
applied only to propositional formulae, RP is used to remove
these operators from the formula. This process is repeated until
there are no ∃B operators left in the formula.

We now provide an axiomatisation for K⊗∀.

Definition IV.4 (Axiomatisation AAMLK). The axiomatisa-
tion AAMLK is a substitution schema consisting of the rules
and axioms of the axiomatisations RMLK and AMLK.

Theorem IV.4. The axiomatisation AAMLK is sound and
complete with respect to the logic K⊗∀.

Proof: The soundness of the rules of AAMLK are
trivial to show. The soundness of the axioms of AAMLK,
in the restricted cases where substitutions in the axioms only
occur with formulae from L and action models may only



have preconditions from L, follows from the soundness of
the axioms of RMLK and AMLK.

We note that these restricted axioms give us enough for a
provably correct translation from the full language of L⊗∀ to
L, by utilising the provably correct translations used in the
completeness proofs for AMLK and RMLK. We proceed
by iteratively selecting subformulae (including subformulae of
preconditions of the action models listed in the formula) of the
form [NT]φ or ∃Bφ, where NT only has preconditions from L,
and where φ ∈ L. We then use the appropriate provably correct
translation for K⊗ or K∀ to translate this subformula into a
formula from L. This process is repeated until there are no
∃B or [NT] operators left in the formula. This provably correct
translation from L⊗∀ to L allows us to show the soundness of
the unrestricted versions of the RMLK and AMLK axioms,
as well as to show the completness of these axioms.

Using the provably correct translation above we get the
following corollaries.

Corollary IV.5. The logics K⊗∀ and K are expressively
equivalent.

Corollary IV.6. The logic K⊗∀ is decidable.

We note that as in the provably correct translation for
refinement modal logic [11], the translation for arbitrary action
model logic may result in a non-elementary increase in the size
of the formula. A decision procedure relying on this translation
would therefore have a non-elementary complexity.

V. SYNTHESIS OF ACTION MODELS

In this section we present the main technical result of the
paper: we aim, for a given post-condition φ, to find an action
model NT that will result in φ becoming true when it is
executed on any Kripke model. However in general, whether
such an action model exists and will be successful depends on
the post-condition and on the particular Kripke model that it
will be executed on. For example, it should be clear that no
action model can result in ⊥ as a post-condition, no matter
what Kripke model it is executed on. As another example,
from Propositions III.1 and III.3 it should be clear that no
action model can result in ¬�ap if it is executed on a Kripke
model that has �ap initially. Therefore we aim to synthesise
an action model that will result in the given post-condition
whenever it is possible to do so.

More precisely: let B ⊆ A and let φ ∈ L⊗∀. Then we aim to
find an action model NT ∈ AMB such that for every Ms ∈ K:
if there exists N′T′ ∈ AMB such that Ms � 〈N′T′〉φ, then
Ms � 〈NT〉φ. In other words, for any initial Kripke model, if
any B-restricted action model can result in φ then the action
model we have synthesised will result in φ.

The result that we show is actually a stronger result in terms
of refinement quantifiers. We aim to find an action model
NT ∈ AMB such that for every Ms ∈ K: if Ms � ∃Bφ
then Ms � 〈NT〉φ. In other words, for any initial Kripke
model, if there is a B-refinement such that φ, then the B-
restricted action model we have synthesised will result in φ.

This result is stronger because we have not already showed
that the existence of a B-refinement such that φ implies the
existence of a B-restricted action model that results in φ; the
correspondence from refinements to action model executions
of Proposition III.2 only applies for refinements of finite
Kripke models, but we have made no such restriction here.
A corollary of this result is that the semantics of the arbitrary
action model logic defined in terms of the refinement quantifier
(Definition III.6) is equivalent to the semantics in terms of the
action model quantifier (Definition III.8).

We use the expressivity result for K⊗∀ and the cover dis-
junctive normal form to assist with our action model synthesis
result. From Theorem IV.4, for any post-condition from L⊗∀
we have an equivalent in L. From Proposition III.6, for any
formula in L we have an equivalent in cover disjunctive normal
form. We therefore proceed by induction on the structure of
the cover disjunctive normal formula to show that we can
construct an action model that results in the desired post-
condition, whenever it is possible. To these ends we introduce
two lemmas, each dealing with a different inductive case.

Lemma V.1. Let B ⊆ A, let φ = α ∨ β ∈ L⊗∀, and let
NαTα = ((Sα,Rα, preα),Tα),Nβ

Tβ
= ((Sβ ,Rβ , preβ),Tα) ∈

AM be multi-pointed B-restricted action models such that
for γ ∈ {α, β}: ` [NγTγ ]γ and ` 〈NγTγ 〉γ ↔ ∃Bγ.
Then there exists a multi-pointed B-restricted action model
NT = ((S,R, pre),T) such that ` [NT]φ and ` 〈NT〉φ↔ ∃Bφ.

Proof: Without loss of generality we assume that Sα and
Sβ are disjoint.

We construct the multi-pointed action model
NT = ((S,R, pre),T) where:

S = Sα ∪ Sβ

R = Rα ∪ Rβ

pre = preα ∪ preβ

T = Tα ∪ Tβ

We note that as N is formed by the disjoint union of Nα

and Nβ , then each action point of Nα and Nβ is bisimilar to
the corresponding action point from N.

First we show that ` [NT]φ.

` [NαTα ]α ∧ [Nβ
Tβ

]β (1)
` [NTα ]α ∧ [NTβ ]β (2)
` [NTα ](α ∨ β) ∧ [NTβ ](α ∨ β) (3)
` [NT](α ∨ β) (4)

(1) follows from hypothesis, (2) follows from Proposition III.5
and the fact that NαTα is bisimilar to NTα , and Nβ

Tβ
is bisimilar

to NTβ , (3) is simple disjunction introduction, and (4) follows
from AU, as T = Tα ∪ Tβ .

Next we show that N is a B-restricted action model. Let
γ ∈ {α, β}, let u ∈ Sγ and let Ms ∈ K. As Nγ is a B-
restricted action model, then Ms⊗Nγu←BMs. As N is formed
from the disjoint union of Nα and Nβ then it is a simple matter
to show that Nu↔Nγu . Therefore from Proposition III.5 we



have that Ms ⊗ Nu↔Ms ⊗ Nγu , which from Proposition II.3
means that Ms ⊗Nu←BMs ⊗Nγu . From Proposition II.2, the
←B relation is transitive, therefore Ms ⊗ Nu←BMs, and so
N is a B-restricted action model.

Finally we show that ` 〈NT〉φ↔ ∃Bφ.

` ∃B(α ∨ β)→ (∃Bα ∨ ∃Bβ) (5)

` ∃B(α ∨ β)→ (〈NαTα〉α ∨ 〈N
β
Tβ
〉β) (6)

` ∃B(α ∨ β)→ (〈NTα〉α ∨ 〈NTβ 〉β) (7)
` ∃B(α ∨ β)→ (〈NTα〉(α ∨ β) ∨ 〈NTβ 〉(α ∨ β)) (8)
` ∃B(α ∨ β)→ (〈NT〉(α ∨ β)) (9)

(5) follows from the AAMLK axiom R, (6) follows from
hypothesis, (7) follows from Proposition III.5 and the fact
that NαTα is bisimilar to NTα , and Nβ

Tβ
is bisimilar to NTβ ,

(8) is simple disjunction introduction, and (9) follows from the
AAMLK axiom AU. The converse, ` 〈NT〉φ→ ∃Bφ follows
from a simple semantic argument, from Proposition III.1, the
fact that NT is a B-restricted action model, and from the
completeness of AAMLK.

Lemma V.2. Let B,C ⊆ A, let φ = π ∧
∧
c∈C ∇cΓc ∈

L⊗∀ and for every c ∈ C and γ ∈ Γc let
NγTγ = ((Sγ ,Rγ , preγ),Tγ) ∈ AM be a multi-pointed B-
restricted action model such that ` [NγTγ ]γ and ` 〈NγTγ 〉γ ↔
∃Bγ. Then there exists a multi-pointed B-restricted ac-
tion model NT = ((S,R, pre),T) such that ` [NT]φ and
` 〈NT〉φ↔ ∃Bφ.

Proof: Without loss of generality we assume that each of
the Sγ are disjoint.

We construct the action model Nu = ((S,R, pre), u) where:

S = {u, skip} ∪
⋃

c∈C,γ∈Γc

Sγ

Ra = {(u, v) | γ ∈ Γa, v ∈ Tγ} ∪ {(skip, skip)} ∪⋃
c∈C,γ∈Γc

Rγa for a ∈ C

Ra = {(u, skip), (skip, skip)} ∪
⋃

c∈C,γ∈Γc

Rγa for a /∈ C

pre = {(u,∃Bφ), (skip,>)} ∪
⋃

c∈C,γ∈Γb

preγ

We note that as N is formed by taking the disjoint union
of each action model Nγ , and the only edges added to states
in each Nγ are inward edges, then each action point of Nγ is
bisimilar to the corresponding action point from N.

We will show that ` [Nu]φ in several parts. We note that
from the definition of the cover operator:

φ ≡ π ∧
∧
c∈C

(�c
∨
γ∈Γc

γ ∧
∧
γ∈Γc

♦cγ)

Therefore we will show individually that:
1) ` [Nu]π
2) ` [Nu]�c

∨
γ∈Γc

γ for every c ∈ C; and
3) ` [Nu]

∧
γ∈Γ ♦cγ for every c ∈ C

and then these results in the end.

First we show that ` [Nu]π.

` φ→ π (10)
` ¬π → ¬φ (11)
` ∀B(¬π → ¬φ) (12)
` ∀B¬π → ∀B¬φ (13)
` ¬∀B¬φ→ ¬∀B¬π (14)
` ∃Bφ→ ∃Bπ (15)
` pre(u)→ π (16)
` [Nu]π (17)

(12) follows from NecR, (13) follows from R, (15) follows
from the definition of ∃B , (16) follows from the definition of
N, as pre(u) = ∃Bφ, (17) follows from AP, and the rest is
straight-forward. Therefore we have that ` [Nu]π.

Next we show that ` [Nu]�c
∨
γ∈Γc

γ for every c ∈ C. Let
c ∈ C. Then:

` [NγTγ ]γ for every γ ∈ Γc (18)

`
∧

v∈Tγ
[Nγv ]γ for every γ ∈ Γc (19)

` �c
∧

v∈Tγ
[Nγv ]γ for every γ ∈ Γc (20)

`
∧

v∈Tγ
�c[N

γ
v ]γ for every γ ∈ Γc (21)

`
∧
γ∈Γc

∧
v∈Tγ

�c[N
γ
v ]γ (22)

`
∧
γ∈Γc

∧
v∈Tγ

�c[N
γ
v ]
∨
γ′∈Γc

γ′ (23)

`
∧

v∈uRc

�c[Nv]
∨
γ′∈Γc

γ′ (24)

` pre(u)→
∧

v∈uRc

�c[Nv]
∨
γ′∈Γc

γ′ (25)

` [Nu]�c
∨
γ′∈Γc

γ′ (26)

(18) follows from hypothesis, (19) follows from AU, (24)
follows from the definition of N, (26) follows from AK,
and the rest is straight-forward. Therefore we have that `
[Nu]�c

∨
γ′∈Γc

γ′ for every c ∈ C.
Next we show that ` [Nu]

∧
γ∈Γc ♦cγ for every c ∈ C. Let

c ∈ C.
Suppose that c ∈ B. Then:

` ∃Bφ→ ∃B∇cΓc (27)

` ∃Bφ→
∧
γ∈Γc

♦c∃Bγ (28)

(27) follows from similar reason to (10-15) above and (28)
follows from RK.



Suppose that c /∈ B. Then:

` ∃Bφ→ ∃B∇cΓc (29)
` ∃Bφ→ ∇c{∃Bγ | γ ∈ Γc} (30)

` ∃Bφ→
∧
γ∈Γc

♦c∃Bγ (31)

(29) follows from similar reasoning to (10-15) above, (30)
follows from RComm, and (31) follows from the definition
of the cover operator.

Therefore we have for every c ∈ C that ` ∃Bφ →∧
γ∈Γc ♦c∃Bγ. Then for every c ∈ C:

` ∃Bφ→
∧
γ∈Γc

♦c∃Bγ (32)

` ∃Bφ→
∧
γ∈Γc

♦c〈N
γ
Tγ 〉γ (33)

` ∃Bφ→
∧
γ∈Γc

♦c
∨

v∈Tγ
〈Nγv 〉γ (34)

` ∃Bφ→
∧
γ∈Γc

♦c
∨

v∈Tγ
〈Nv〉γ (35)

` ∃Bφ→
∧
γ∈Γc

♦c
∨

v∈uRc

〈Nu〉γ (36)

`
∧
γ∈Γc

(
∃Bφ→

∨
v∈vRc

♦c〈Nv〉γ

)
(37)

`
∧
γ∈Γc

(∃Bφ→ 〈Nu〉♦cγ) (38)

`
∧
γ∈Γc

[Nu]♦cγ (39)

(32) follows from (28) and (31) from above, (33) follows from
hypothesis, (34) follows from AU, (35) and (36) follow from
the definitions of N, and (38) follows from AK. Therefore we
have that `

∧
γ∈Γc

[Nu]♦cγ for every c ∈ C.
Finally we combine the results we have shown so far:

` [Nu]π ∧
∧
c∈C

[Nu]�c
∨
γ∈Γc

γ ∧
∧
γ∈Γc

[Nu]♦cγ

 (40)

` [Nu](π ∧
∧
c∈C
∇cΓc) (41)

(40) follows from (14), (26) and (38) above, and (41) follows
from AC. Therefore we have that ` [Nu](π ∧

∧
c∈C ∇cΓc).

Next we show that ` 〈Nu〉φ↔ ∃Bφ. This is straight-foward,
given what we have already shown.

` 〈Nu〉φ↔ (pre(u) ∧ [Nu]φ) (42)
` 〈Nu〉φ↔ pre(u) (43)
` 〈Nu〉φ↔ ∃Bφ (44)

(42) follows from a simple semantic argument, (43) follows
from (41) above, and (44) follows from the definition of N.

Finally we show that N is a B-restricted action model.
Let c ∈ C, let γ ∈ Γc, let u ∈ Sγ and let Ms ∈ K be a

Kripke model such that Ms � preγ(u). As Nγ is a B-restricted

action model, then Ms ⊗ Nγu←BMs. As the construction of
N includes a complete copy of Nγ , and adds only inward
edges to action points in Sγ then it is a simple matter to show
that Nu↔Nγu . Therefore from Proposition III.5 we have that
Ms ⊗ Nu↔Ms ⊗ Nγu . Therefore Ms ⊗ Nu←BMs.

Let Ms ∈ K. We note that Ms ⊗ Nskip↔Ms and therefore
Ms ⊗ Nskip←BMs.

Let Ms ∈ K such that Ms � pre(u). Then for every a ∈ A,
v ∈ uRa and t ∈ sRa such that Mt � pre(v), from above
we have that Mt ⊗Nv←BMt and therefore there exists a B-
simulation Rt,v between Mt⊗Nv and Mt. Let M ′s′ = Ms⊗Nv.
We define the B-simulation R between M ′s′ and Ms as:

R = {(s, u)} ∪
⋃

(t,v)∈s′R′
a

Rt,v

We must show that R satisfies atoms, forth-a for every a ∈ A,
and back-a for every a ∈ A\B. We note that if (u′, u) ∈ Rt,v

for some (t, v) ∈ s′R′a then atoms, forth-a and back-a all
follow from the fact that Rt,v is a B-simulation. Therefore
we need only show that atoms, forth-a and back-a hold for
(s′, s) ∈ R.

atoms: V ′(s′) = V ′(s, u) = V (s).
forth-a: Let a ∈ A and let t′ ∈ s′R′a. Then from the

definition of action model execution, t′ = (t, v) for some t ∈
sRa and v ∈ uRa. We note that (t, v) ∈ Rt,v ⊆ R. Therefore
forth-a is satisfied.

back-a: Let a ∈ A \B and let t ∈ sRa.
Suppose that a ∈ C. From (30) above and the definition of

the cover operator we have that ` ∃Bφ→ �a
∨
γ∈Γa

∃Bγ. As
Ms � ∃Bφ then Ms � �a

∨
γ∈Γa

∃Bγ, and so Mt � ∃Bγ for
some γ ∈ Γa. By hypothesis we have that ` 〈NγTγ 〉γ ↔ ∃Bγ,
and therefore Mt � 〈NγTγ 〉γ. Therefore Mt � 〈Nγt 〉γ for some
v ∈ Tγ . Therefore Mt � pre(v), and so (t, v) ∈ s′R′a and
((t, v), t) ∈ Rt,v ⊆ R.

Suppose that a /∈ C. We note that Mt � pre(skip) = > and
so (t, skip) ∈ s′R′a and ((t, skip), t) ∈ Rt,skip ⊆ R.

Therefore back-a holds.
Therefore M ′s′←BMs and so N is a B-restricted action

model.

Theorem V.3. Let B ⊆ A and let φ ∈ L⊗∀. Then there exists
a multi-pointed B-restricted action model NT ∈ AM such
that ` [NT]φ and ` 〈NT〉φ↔ ∃Bφ.

Proof: Without loss of generality, from Lemma IV.5 we
may assume that φ ∈ L, and from Proposition III.6 we may
further assume that φ is in cover disjunctive normal form. Then
we proceed by induction on the structure of φ.

Suppose that φ = π ∧
∧
c∈C ∇cΓc where π ∈ L0, C ⊆ A,

and for every c ∈ C: Γc ⊆ L is a finite set of formulae. Then
from the induction hypothesis for every c ∈ C and γ ∈ Γc
there exists a multi-pointed B-restricted action model NγTγ ∈
AM such that ` [NγTγ ]γ and ` 〈NγTγ 〉γ ↔ ∃Bγ. Then from
Lemma V.2 there exists a multi-pointed B-restricted action
model NT such that ` [NT]φ and ` 〈NT〉φ ↔ ∃Bφ. We note
that the base case for the induction occurs when φ = π (i.e.



C = ∅) or when φ = π ∧
∧
c∈C ∇c∅ (i.e. for every c ∈ C:

Γc = ∅).
Suppose that φ = α ∨ β. Then from the induction hy-

pothesis there exists multi-pointed B-restricted action models
NαTα ,N

β
Tβ
∈ AM such that for γ ∈ {α, β}: [NγTγ ]γ and

〈NγTγ 〉γ ↔ ∃Bγ. Then from Lemma V.1 there exists a multi-
pointed B-restricted action model NT such that [NT]φ and
〈NT〉φ↔ ∃Bφ.

This result allows us to show a complete correspondence
between action model quantifiers and refinement quantifiers.

Corollary V.4. The semantics of arbitrary action model logic
of Definition III.6 and Definition III.8 are equivalent for the
logic of K⊗∀.

Proof: For convenience we will show that the dual state-
ment of the semantics of Definition III.6 and Definition III.8
are equivalent. The dual statement of Definition III.6 is:

Ms � ∃Bφ iff there exists M ′s′ ∈ K such that
M ′s′←BMs and M ′s′ � φ

and the dual statement of Definition III.8 is:

Ms � ∃Bφ iff there exists Nu ∈ AMB such that
Ms � 〈Nu〉φ

Let φ ∈ L⊗∀ and let Ms ∈ K.
Suppose that there exists M ′s′ ∈ K such that M ′s′←BMs

and M ′s′ � φ. Then Ms � ∃Bφ. From Theorem V.3 there
exists a multi-pointed B-restricted action model NT such that
〈NT〉φ ↔ ∃Bφ. Therefore Ms � 〈NT〉φ and in particular
Ms � 〈Nu〉φ for some u ∈ T. Therefore there exists some
Nu ∈ AMB such that Ms � ∃Nuφ.

Suppose that there exists some Nu ∈ AMB such that Ms �
∃Nuφ. Let M ′s′ = Ms ⊗ Nu. Then M ′s′ � φ, and as Nu is a
B-restricted action model, by definition M ′s′←BMs.

Corollary V.5. Let B ⊆ A and let φ ∈ L be a formula in
cover disjunctive normal form of size n. Then there exists a
multi-pointed B-restricted action model NT ∈ AMB such
that [NT]φ and 〈NT〉φ↔ ∃Bφ such that NT is of size O(n2).

We note that conversion from L⊗∀ to L may result in a
considerable increase in the size of the formula; Bozzelli, van
Ditmarsch and Pinchinat [8] gave an exponential lower-bound
on the succinctness of the refinement modal logic that also
applies to the arbitrary action model logic. Therefore although
the size of our synthesised action model is O(n2) with respect
to the size of a formula in cover disjunctive normal form, it
may be considerably larger for arbitrary L⊗∀ formulae.

VI. FUTURE WORK

We have yet to consider the arbitrary action model logic in
the setting of other classes of Kripke models, such as KD45
or S5, the addition of common knowledge operators to the
language, or the question of succinctness or complexity results.
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